
4/11/24

1

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of
Sci Eng & Built Env

reda.bouadjenek@deakin.edu.au

SIT330-770: Natural Language
Processing

Week 6 - Vector Semantics and
Embeddings

1
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 6.1 - Word Meaning

SIT330-770: Natural
Language Processing

2

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

2

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• N-gram or text classification methods we've seen so far
o Words are just strings (or indices wi in a vocabulary list)

o That's not very satisfactory!

• Introductory logic classes:
o The meaning of "dog" is DOG; cat is CAT

 ∀x DOG(x) ⟶ MAMMAL(x)

• Old linguistics joke by Barbara Partee in 1967:
o Q: What's the meaning of life?

o A: LIFE

• That seems hardly better!

What do words mean?

3

3

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• What should a theory of word meaning do for us?

• Let's look at some desiderata

• From lexical semantics, the linguistic study of word meaning

Desiderata

4

4
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Lemmas and senses

5

mouse (N)
1. any of numerous small rodents...
2. a hand-operated device that controls
a cursor...

sense

lemma

A sense or “concept” is the meaning component of a word
Lemmas can be polysemous (have multiple senses)

Modified from the online thesaurus WordNet

5

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Synonyms have the same meaning in some or all contexts.
o filbert / hazelnut

ocouch / sofa

obig / large

oautomobile / car

ovomit / throw up

owater / H20

Relations between senses: Synonymy

6

6

mailto:reda.bouadjenek@deakin.edu.au

4/11/24

2

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Note that there are probably no examples of perfect

synonymy.
o Even if many aspects of meaning are identical

o Still may differ based on politeness, slang, register, genre, etc.

Relations between senses: Synonymy

7

7
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

water/H20

 "H20" in a surfing guide?

big/large

 my big sister != my large sister

Relation: Synonymy?

8

8

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Difference in form à difference in meaning

The Linguistic Principle of Contrast

9

9

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Abbé Gabriel Girard 1718

10

 [I do not believe that there
is a synonymous word in any
language]

Re: "exact" synonyms

Thanks to Mark Aronoff!

10
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Words with similar meanings. Not synonyms, but sharing some

element of meaning

car, bicycle

cow, horse

Relation: Similarity

11

11

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Ask humans how similar 2 words are

12

word1 word2 similarity

vanish disappear 9.8
behave obey 7.3
belief impression 5.95
muscle bone 3.65
modest flexible 0.98
hole agreement 0.3

SimLex-999 dataset (Hill et al., 2015)

12

4/11/24

3

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Also called "word association"
• Words can be related in any way, perhaps via a semantic frame or

field

ocoffee, tea: similar
ocoffee, cup: related, not similar

Relation: Word relatedness

13

13
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Words that

o cover a particular semantic domain
o bear structured relations with each other.

hospitals
 surgeon, scalpel, nurse, anaesthetic, hospital
restaurants
 waiter, menu, plate, food, menu, chef

houses
 door, roof, kitchen, family, bed

Semantic field

14

14

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Senses that are opposites with respect to only one feature of meaning

• Otherwise, they are very similar!

dark/light short/long fast/slow rise/fall

hot/cold up/down in/out

• More formally: antonyms can
o define a binary opposition or be at opposite ends of a scale
o long/short, fast/slow

o Be reversives:

o rise/fall, up/down

Relation: Antonymy

15

15

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Words have affective meanings
• Positive connotations (happy)

• Negative connotations (sad)

• Connotations can be subtle:
• Positive connotation: copy, replica, reproduction
• Negative connotation: fake, knockoff, forgery

• Evaluation (sentiment!)
• Positive evaluation (great, love)
• Negative evaluation (terrible, hate)

Connotation (sentiment)

16

16
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Words seem to vary along 3 affective dimensions:

o valence: the pleasantness of the stimulus
o arousal: the intensity of emotion provoked by the stimulus

o dominance: the degree of control exerted by the stimulus

Connotation

17

Osgood et al. (1957)

Word Score Word Score

Valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005

Arousal elated 0.960 mellow 0.069

frenzy 0.965 napping 0.046
Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

Values from NRC VAD Lexicon (Mohammad 2018)

17

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Concepts or word senses

o Have a complex many-to-many association with words (homonymy, multiple senses)

• Have relations with each other
o Synonymy

o Antonymy

o Similarity

o Relatedness

o Connotation

So far

18

18

4/11/24

4

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 6.2 - Vector Semantics

SIT330-770: Natural
Language Processing

19

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

19
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Can we build a theory of how to represent word meaning, that accounts for

at least some of the desiderata?

• We'll introduce vector semantics

o The standard model in language processing!

o Handles many of our goals!

Computational models of word meaning

20

20

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

•PI #43:

"The meaning of a word is its use in the language"

Ludwig Wittgenstein

21

21

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• One way to define "usage":

• words are defined by their environments (the words around them)

• Zellig Harris (1954):

• If A and B have almost identical environments we say that they are

synonyms.

Let's define words by their usages

22

22
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Suppose you see these sentences:
o Ong choi is delicious sautéed with garlic.

o Ong choi is superb over rice

o Ong choi leaves with salty sauces

• And you've also seen these:
o …spinach sautéed with garlic over rice

o Chard stems and leaves are delicious

o Collard greens and other salty leafy greens

• Conclusion:
o Ongchoi is a leafy green like spinach, chard, or collard greens

o W e could conclude this based on w ords like "leaves" and "delicious" and "sauteed"

What does recent English borrowing ongchoi mean?

23

23

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Ongchoi: Ipomoea aquatica "Water Spinach"

24

Ya m a gu ch i, W ik im e d ia C o m m o n s, p u b lic d o m a in

空心菜
kangkong
rau muống
…

24

4/11/24

5

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Let's define the meaning of a word by its distribution in language use,

meaning its neighboring words or grammatical environments.

Idea 1: Defining meaning by linguistic distribution

25

25
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• 3 affective dimensions for a word

o valence: pleasantness

o arousal: intensity of emotion

o dominance: the degree of control exerted

o

• Hence the connotation of a word is a vector in 3-space

Idea 2: Meaning as a point in space (Osgood et al. 1957)

26

Word Score Word Score

Valence love 1.000 toxic 0.008

happy 1.000 nightmare 0.005

Arousal elated 0.960 mellow 0.069

frenzy 0.965 napping 0.046

Dominance powerful 0.991 weak 0.045

leadership 0.983 empty 0.081

NRC VAD Lexicon
 (Mohammad 2018)

26

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Idea 1: Defining meaning by linguistic distribution

Idea 2: Meaning as a point in multidimensional space

27

27

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Each word = a vector (not just "good" or "w45")

• Similar words are "nearby in semantic space"

• We build this space automatically by seeing which words are nearby in text

Defining meaning as a point in space based on distribution

28

6 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

good
nice

bad
worst

not good

wonderful
amazing

terrific

dislike

worse

very good incredibly good
fantastic

incredibly badnow

youi
that

with

byto
’s

are

is

a
than

Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and
phrases, showing that words with similar meanings are nearby in space. The original 60-
dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015)
with colors added for explanation.

The fine-grained model of word similarity of vector semantics offers enormous
power to NLP applications. NLP applications like the sentiment classifiers of Chap-
ter 4 or Chapter 5 depend on the same words appearing in the training and test sets.
But by representing words as embeddings, classifiers can assign sentiment as long as
it sees some words with similar meanings. And as we’ll see, vector semantic models
can be learned automatically from text without supervision.

In this chapter we’ll introduce the two most commonly used models. In the tf-idf
model, an important baseline, the meaning of a word is defined by a simple function
of the counts of nearby words. We will see that this method results in very long
vectors that are sparse, i.e. mostly zeros (since most words simply never occur in
the context of others). We’ll introduce the word2vec model family for construct-
ing short, dense vectors that have useful semantic properties. We’ll also introduce
the cosine, the standard way to use embeddings to compute semantic similarity, be-
tween two words, two sentences, or two documents, an important tool in practical
applications like question answering, summarization, or automatic essay grading.

6.3 Words and Vectors

“The most important attributes of a vector in 3-space are {Location, Location, Location}”
Randall Munroe, https://xkcd.com/2358/

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. We’ll look at two popular
matrices: the term-document matrix and the term-term matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model

28
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Called an "embedding" because it's embedded into a space (see

textbook)

• The standard way to represent meaning in NLP

• Every modern NLP algorithm uses embeddings as the

representation of word meaning

• Fine-grained model of meaning for similarity

We define meaning of a word as a vector

29

29

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Consider sentiment analysis:

o With words, a feature is a word identity

oFeature 5: 'The previous word was "terrible"'
o requires exact same word to be in training and test

o With embeddings:

oFeature is a word vector
o 'The previous word was vector [35,22,17…]
oNow in the test set we might see a similar vector [34,21,14]
oWe can generalize to similar but unseen words!!!

Intuition: why vectors?

30

30

4/11/24

6

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• tf-idf
o Information Retrieval workhorse!

o A common baseline model
o Sparse vectors
o Words are represented by (a simple function of) the counts of nearby words

• Word2vec
o Dense vectors
o Representation is created by training a classifier to predict whether a word is likely to appear

nearby
o Later we'll discuss extensions called contextual embeddings

We'll discuss 2 kinds of embeddings

31

31
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

From now on: Computing with meaning representations
instead of string representations

32

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2020. All

rights reserved. Draft of January 13, 2021.

CHAPTER

6 Vector Semantics and
Embeddings
C⇧@Â(|�ó|�ÿC Nets are for fish;

Once you get the fish, you can forget the net.
�⇧@Â(✏�ó✏�ÿ� Words are for meaning;

Once you get the meaning, you can forget the words
ÑP(Zhuangzi), Chapter 26

The asphalt that Los Angeles is famous for occurs mainly on its freeways. But
in the middle of the city is another patch of asphalt, the La Brea tar pits, and this
asphalt preserves millions of fossil bones from the last of the Ice Ages of the Pleis-
tocene Epoch. One of these fossils is the Smilodon, or saber-toothed tiger, instantly
recognizable by its long canines. Five million years ago or so, a completely different
sabre-tooth tiger called Thylacosmilus lived
in Argentina and other parts of South Amer-
ica. Thylacosmilus was a marsupial whereas
Smilodon was a placental mammal, but Thy-
lacosmilus had the same long upper canines
and, like Smilodon, had a protective bone
flange on the lower jaw. The similarity of
these two mammals is one of many examples
of parallel or convergent evolution, in which particular contexts or environments
lead to the evolution of very similar structures in different species (Gould, 1980).

The role of context is also important in the similarity of a less biological kind
of organism: the word. Words that occur in similar contexts tend to have similar
meanings. This link between similarity in how words are distributed and similarity
in what they mean is called the distributional hypothesis. The hypothesis wasdistributional

hypothesis
first formulated in the 1950s by linguists like Joos (1950), Harris (1954), and Firth
(1957), who noticed that words which are synonyms (like oculist and eye-doctor)
tended to occur in the same environment (e.g., near words like eye or examined)
with the amount of meaning difference between two words “corresponding roughly
to the amount of difference in their environments” (Harris, 1954, 157).

In this chapter we introduce vector semantics, which instantiates this linguisticvector
semantics

hypothesis by learning representations of the meaning of words, called embeddings,embeddings

directly from their distributions in texts. These representations are used in every nat-
ural language processing application that makes use of meaning, and the static em-
beddings we introduce here underlie the more powerful dynamic or contextualized
embeddings like BERT that we will see in Chapter 10.

These word representations are also the first example in this book of repre-
sentation learning, automatically learning useful representations of the input text.representation

learning
Finding such self-supervised ways to learn representations of the input, instead of
creating representations by hand via feature engineering, is an important focus of
NLP research (Bengio et al., 2013).

32

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 6.3 – Words and Vectors: BOW

SIT330-770: Natural
Language Processing

33

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

33

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 6.3 – Words and Vectors: BOW

SIT330-770: Natural
Language Processing

34

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

34
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• A document is represented as vector of words.
o One dimension per word.

o Vector size is the vocabulary size, e.g., English may contain 100k words.

o Different weighting schemas can be used, e.g., tf, log(tf), tf-idf, Boolean, etc.

o Sparse vector, e.g., almost all values are zeros.

Bag of Words

35

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

35

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Assumes independence between words:

o The sentences “John likes Mary” has the same representation as “Mary likes John” –

even though the semantic is different).

• May work well for Information Retrieval tasks, but not for NLP tasks!

o Sentiment analysis:

“Ah no, there are good movies on Netflix!” vs. “Ah, there are no good movies on Netflix!”

Order matters for NLP tasks!

36

36

4/11/24

7

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• The dot product between two vectors is a scalar:

• The dot product tends to be high when the two vectors have large values in

the same dimensions

• Dot product can thus be a useful similarity metric between vectors

Computing word similarity: Dot product and cosine

37

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

37
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Dot product favors long vectors

• Dot product is higher if a vector is longer (has higher values in many dimension)

• Vector length:

• Frequent words (of, the, you) have long vectors (since they occur many times with

other words).

• So dot product overly favors frequent words

Problem with raw dot-product

38

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

38

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Alternative: cosine for computing word similarity

39

12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

Based on the definition of the dot product between two vectors a and b

39

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• tf-idf (or PMI) vectors are

olong (length |V|= 20,000 to 50,000)

osparse (most elements are zero)

• Alternative: learn vectors which are

oshort (length 50-1000)

odense (most elements are non-zero)

Sparse versus dense vectors

40

40
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Why dense vectors?
o Short vectors may be easier to use as features in machine learning (fewer weights to tune)

o Dense vectors may generalize better than explicit counts

o Dense vectors may do better at capturing synonymy:

ocar and automobile are synonyms; but are distinct dimensions

•a word with car as a neighbor and a word with automobile as a neighbor

should be similar, but aren't

o In practice, they work better

Sparse versus dense vectors

41

41

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• “Neural Language Model”-inspired models
o Word2vec (skipgram, CBOW), GloVe

• Singular Value Decomposition (SVD)
o A special case of this is called LSA – Latent Semantic Analysis

• Alternative to these "static embeddings":
• Contextual Embeddings (ELMo, BERT)

• Compute distinct embeddings for a word in its context

• Separate embeddings for each token of a word

Common methods for getting short dense vectors

42

42

4/11/24

8

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Word2vec (Mikolov et al)

• https://code.google.com/archive/p/word2vec/

• GloVe (Pennington, Socher, Manning)

• http://nlp.stanford.edu/projects/glove/

Simple static embeddings you can download!

43

43
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Popular embedding method

• Very fast to train

• Code available on the web

• Idea: predict rather than count

• Word2vec provides various options. We'll do:

• skip-gram with negative sampling (SGNS)

Word2vec

44

44

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Instead of counting how often each word w occurs near "apricot"
o Train a classifier on a binary prediction task:

o Is w likely to show up near "apricot"?

• We don’t actually care about this task

oBut we'll take the learned classifier weights as the word embeddings

• Big idea: self-supervision:
oA word c that occurs near apricot in the corpus cats as the gold "correct answer" for

supervised learning
oNo need for human labels
o Bengio et al. (2003); Collobert et al. (2011)

Word2Vec

45

45

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

1. Treat the target word t and a neighboring context word c as positive

examples.

2. Randomly sample other words in the lexicon to get negative examples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the learned weights as the embeddings

Approach: predict if candidate word c is a "neighbor"

46

46

• (assuming a +/- 2 word window)

…lemon, a [tablespoon of apricot jam, a] pinch…

 c1 c2 c3 c4
• Goal: train a classifier that is given a candidate (word, context) pair
 (apricot, jam)
 (apricot, aardvark)
 …
• And assigns each pair a probability:

o P(+|w, c)

o P(−|w, c) = 1 − P(+|w, c)

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Skip-Gram Training Data

47

[target]

47

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Remember: two vectors are similar if they have a high dot

product
oCosine is just a normalized dot product

• So:

oSimilarity(w,c) ∝ w · c

• We’ll need to normalize to get a probability
o (cosine isn't a probability either)

Similarity is computed from dot product

48

48

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

4/11/24

9

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Sim(w,c) ≈ w · c

• To turn this into a probability

• We'll use the sigmoid from logistic regression:

Turning dot products into probabilities

49

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(�ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(�ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra

aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter q that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(�ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(�ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra

aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter q that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

49
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• This is for one context word, but we have lots of context words.

• We'll assume independence and just multiply them:

How Skip-Gram Classifier computes P(+|w, c)

50

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(�ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(�ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra

aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter q that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra

aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter q that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

50

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• A probabilistic classifier, given

• a test target word w

• its context window of L words c1:L

• Estimates probability that w occurs in this window based on similarity of w

(embeddings) to c1:L (embeddings).

• To compute this, we just need embeddings for all the words.

Skip-gram classifier: summary

51

51

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 6.5 – Word2vec: Learning the
embeddings

SIT330-770: Natural
Language Processing

52

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

52
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

…lemon, a [tablespoon of apricot jam, a] pinch…

 c1 c2 [target] c3 c4

53

Skip-Gram Training data

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

53

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

…lemon, a [tablespoon of apricot jam, a] pinch…

 c1 c2 [target] c3 c4

54

Skip-Gram Training data

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

For each positive
example we'll grab k
negative examples,
sampling by frequency

54

4/11/24

10

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

…lemon, a [tablespoon of apricot jam, a] pinch…

 c1 c2 [target] c3 c4

55

Skip-Gram Training data

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

55
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Given the set of positive and negative training instances, and an

initial set of embedding vectors

• The goal of learning is to adjust those word vectors such that we:
o Maximize the similarity of the target word, context word pairs (w , cpos) drawn from the

positive data

o Minimize the similarity of the (w , cneg) pairs drawn from the negative data.

Word2vec: how to learn vectors

56

56

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Maximize the similarity of the target with the actual context words, and minimize the

similarity of the target with the k negative sampled non-neighbor words.

Loss function for one w with cpos , cneg1 ...cnegk

57

6.8 • WORD2VEC 21

Given the set of positive and negative training instances, and an initial set of embed-
dings, the goal of the learning algorithm is to adjust those embeddings to

• Maximize the similarity of the target word, context word pairs (w,cpos) drawn
from the positive examples

• Minimize the similarity of the (w,cneg) pairs from the negative examples.
If we consider one word/context pair (w,cpos) with its k noise words cneg1 ...cnegk ,

we can express these two goals as the following loss function L to be minimized
(hence the �); here the first term expresses that we want the classifier to assign the
real context word cpos a high probability of being a neighbor, and the second term
expresses that we want to assign each of the noise words cnegi a high probability of
being a non-neighbor, all multiplied because we assume independence:

LCE = � log

"
P(+|w,cpos)

kY

i=1

P(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

logP(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

log
�
1�P(+|w,cnegi)

�
#

= �
"

logs(cpos ·w)+
kX

i=1

logs(�cnegi ·w)
#

(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
shows the intuition of one step of learning.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricot) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the

57

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• How to learn?
o Stochastic gradient descent!

• We’ll adjust the word weights to
omake the positive pairs more likely

oand the negative pairs less likely,

oover the entire training set.

Learning the classifier

58

58
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Intuition of one step of gradient descent

59

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

59

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• At each step

• Direction: We move in the reverse direction from the gradient of the loss function

• Magnitude: we move the value of this gradient ##$𝐿(𝑓 𝑥;𝑤 , 𝑦) weighted by a

learning rate η

• Higher learning rate means move w faster

Reminder: gradient descent

60

10 CHAPTER 5 • LOGISTIC REGRESSION

example):

wt+1 = wt �h d
dw

L(f (x;w),y) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

60

4/11/24

11

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

The derivatives of the loss function

61

22 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

proof as an exercise at the end of the chapter):

∂LCE

∂cpos
= [s(cpos ·w)�1]w (6.35)

∂LCE

∂cneg
= [s(cneg ·w)]w (6.36)

∂LCE

∂w
= [s(cpos ·w)�1]cpos +

kX

i=1

[s(cnegi ·w)]cnegi (6.37)

The update equations going from time step t to t + 1 in stochastic gradient descent
are thus:

ct+1
pos = ct

pos �h [s(ct
pos ·w)�1]w (6.38)

ct+1
neg = ct

neg �h [s(ct
neg ·w)]w (6.39)

wt+1 = wt �h [s(cpos ·wt)�1]cpos +
kX

i=1

[s(cnegi ·w
t)]cnegi (6.40)

Just as in logistic regression, then, the learning algorithm starts with randomly ini-
tialized W and C matrices, and then walks through the training corpus using gradient
descent to move W and C so as to maximize the objective in Eq. 6.34 by making the
updates in (Eq. 6.39)-(Eq. 6.40).

Recall that the skip-gram model learns two separate embeddings for each word i:
the target embedding wi and the context embedding ci, stored in two matrices, thetarget

embedding
context

embedding target matrix W and the context matrix C. It’s common to just add them together,
representing word i with the vector wi + ci. Alternatively we can throw away the C
matrix and just represent each word i by the vector wi.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset.

6.8.3 Other kinds of static embeddings
There are many kinds of static embeddings. An extension of word2vec, fasttextfasttext
(Bojanowski et al., 2017), deals with unknown words and sparsity in languages with
rich morphology, by using subword models. Each word in fasttext is represented as
itself plus a bag of constituent n-grams, with special boundary symbols < and >
added to each word. For example, with n = 3 the word where would be represented
by the sequence <where> plus the character n-grams:

<wh, whe, her, ere, re>

Then a skipgram embedding is learned for each constituent n-gram, and the word
where is represented by the sum of all of the embeddings of its constituent n-grams.
A fasttext open-source library, including pretrained embeddings for 157 languages,
is available at https://fasttext.cc.

The most widely used static embedding model besides word2vec is GloVe (Pen-
nington et al., 2014), short for Global Vectors, because the model is based on cap-
turing global corpus statistics. GloVe is based on ratios of probabilities from the
word-word co-occurrence matrix, combining the intuitions of count-based models
like PPMI while also capturing the linear structures used by methods like word2vec.

6.8 • WORD2VEC 21

Given the set of positive and negative training instances, and an initial set of embed-
dings, the goal of the learning algorithm is to adjust those embeddings to

• Maximize the similarity of the target word, context word pairs (w,cpos) drawn
from the positive examples

• Minimize the similarity of the (w,cneg) pairs from the negative examples.
If we consider one word/context pair (w,cpos) with its k noise words cneg1 ...cnegk ,

we can express these two goals as the following loss function L to be minimized
(hence the �); here the first term expresses that we want the classifier to assign the
real context word cpos a high probability of being a neighbor, and the second term
expresses that we want to assign each of the noise words cnegi a high probability of
being a non-neighbor, all multiplied because we assume independence:

LCE = � log

"
P(+|w,cpos)

kY

i=1

P(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

logP(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

log
�
1�P(+|w,cnegi)

�
#

= �
"

logs(cpos ·w)+
kX

i=1

logs(�cnegi ·w)
#

(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
shows the intuition of one step of learning.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricot) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the

6.8 • WORD2VEC 21

Given the set of positive and negative training instances, and an initial set of embed-
dings, the goal of the learning algorithm is to adjust those embeddings to

• Maximize the similarity of the target word, context word pairs (w,cpos) drawn
from the positive examples

• Minimize the similarity of the (w,cneg) pairs from the negative examples.
If we consider one word/context pair (w,cpos) with its k noise words cneg1 ...cnegk ,

we can express these two goals as the following loss function L to be minimized
(hence the �); here the first term expresses that we want the classifier to assign the
real context word cpos a high probability of being a neighbor, and the second term
expresses that we want to assign each of the noise words cnegi a high probability of
being a non-neighbor, all multiplied because we assume independence:

LCE = � log

"
P(+|w,cpos)

kY

i=1

P(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

logP(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

log
�
1�P(+|w,cnegi)

�
#

= �
"

logs(cpos ·w)+
kX

i=1

logs(�cnegi ·w)
#

(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
shows the intuition of one step of learning.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricot) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the

61
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Start with randomly initialized C and W matrices, then incrementally do

updates

Update equation in SGD

62

22 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

proof as an exercise at the end of the chapter):

∂LCE

∂cpos
= [s(cpos ·w)�1]w (6.35)

∂LCE

∂cneg
= [s(cneg ·w)]w (6.36)

∂LCE

∂w
= [s(cpos ·w)�1]cpos +

kX

i=1

[s(cnegi ·w)]cnegi (6.37)

The update equations going from time step t to t + 1 in stochastic gradient descent
are thus:

ct+1
pos = ct

pos �h [s(ct
pos ·wt)�1]wt (6.38)

ct+1
neg = ct

neg �h [s(ct
neg ·wt)]wt (6.39)

wt+1 = wt �h

"
[s(cpos ·wt)�1]cpos +

kX

i=1

[s(cnegi ·w
t)]cnegi

#
(6.40)

Just as in logistic regression, then, the learning algorithm starts with randomly ini-
tialized W and C matrices, and then walks through the training corpus using gradient
descent to move W and C so as to maximize the objective in Eq. 6.34 by making the
updates in (Eq. 6.39)-(Eq. 6.40).

Recall that the skip-gram model learns two separate embeddings for each word i:
the target embedding wi and the context embedding ci, stored in two matrices, thetarget

embedding
context

embedding target matrix W and the context matrix C. It’s common to just add them together,
representing word i with the vector wi + ci. Alternatively we can throw away the C
matrix and just represent each word i by the vector wi.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset.

6.8.3 Other kinds of static embeddings
There are many kinds of static embeddings. An extension of word2vec, fasttextfasttext
(Bojanowski et al., 2017), deals with unknown words and sparsity in languages with
rich morphology, by using subword models. Each word in fasttext is represented as
itself plus a bag of constituent n-grams, with special boundary symbols < and >
added to each word. For example, with n = 3 the word where would be represented
by the sequence <where> plus the character n-grams:

<wh, whe, her, ere, re>

Then a skipgram embedding is learned for each constituent n-gram, and the word
where is represented by the sum of all of the embeddings of its constituent n-grams.
A fasttext open-source library, including pretrained embeddings for 157 languages,
is available at https://fasttext.cc.

The most widely used static embedding model besides word2vec is GloVe (Pen-
nington et al., 2014), short for Global Vectors, because the model is based on cap-
turing global corpus statistics. GloVe is based on ratios of probabilities from the
word-word co-occurrence matrix, combining the intuitions of count-based models
like PPMI while also capturing the linear structures used by methods like word2vec.

62

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• SGNS learns two sets of embeddings

o Target embeddings matrix W

o Context embedding matrix C

• It's common to just add them together, representing word i as the vector wi

+ ci

Two sets of embeddings

63

63

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Start with V random d-dimensional vectors as initial embeddings

• Train a classifier based on embedding similarity

oTake a corpus and take pairs of words that co-occur as positive examples

oTake pairs of words that don't co-occur as negative examples

oTrain the classifier to distinguish these by slowly adjusting all the embeddings to

improve the classifier performance

oThrow away the classifier code and keep the embeddings.

Summary: How to learn word2vec (skip-gram) embeddings

64

64
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 6.6 – Word Embedding vs. Bag of
Words

SIT330-770: Natural
Language Processing

65

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

65

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Word Embedding vs. Bag of Words

66

Traditional Method - Bag of Words Model

Two approaches:

§ Either uses one hot encoding.
§ Each word in the vocabulary is represented by one bit position

in a HUGE vector.

§ For example, if we have a vocabulary of 10,000 words, and
“aardvark” is the 4th word in the dictionary, it would be
represented by: [0 0 0 1 0 0 0 0 0].

§ Or uses document representation.
§ Each word in the vocabulary is represented by its presence in

documents.

§ For example, if we have a corpus of 1M documents, and “Hello”
is in 1th, 3th and 5th documents only, it would be represented
by: [1 0 1 0 1 0 0 0 0].

§ Assumes independence between words.

Word Embeddings

§ Stores each word in as a point in space, where it is
represented by a dense vector of fixed number of
dimensions (generally 300) .

§ For example, “Hello” might be represented as : [0.4, -0.11, 0.55,
0.3 . . . 0.1, 0.02].

§ Dimensions are projections along different axes, more of a
mathematical concept.

§ Unsupervised, built just by reading huge corpus.

§ Assumes dependence between words.

66

4/11/24

12

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Word Embedding vs. Bag of Words

67

Traditional Method - Bag of Words Model

§ Requires very large weight matrix for 1st layers.

§ Models not flexible with unseen words in the
training set.

Word Embeddings

§ A compact weight matrix for 1st layers.

§ Flexible models with unseen words in the training
set.

10,000 words .
.

W’s size is 10,000x100 = 106

100 units .
.

d300 100 units

W’s size is 300x100 = 3x104

He is a cultivator

LM

He is a cultivator

LM

≃
farmer

67
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 6.7 – Properties of Embeddings

SIT330-770: Natural
Language Processing

68

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

68

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

•Small windows (C= +/- 2) : nearest words are syntactically similar words in same

taxonomy

o Hogwarts nearest neighbors are other fictional schools

o Sunnydale, Evernight, Blandings
•Large windows (C= +/- 5) : nearest words are related words in same semantic field

o Hogwarts nearest neighbors are Harry Potter world:

o Dumbledore, half-blood, Malfoy

The kinds of neighbors depend on window size

69

69

24 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of ±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of ±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy/Relational Similarity: Another semantic property of embeddings is their
ability to capture relational meanings. In an important early vector space model of
cognition, Rumelhart and Abrahamson (1973) proposed the parallelogram modelparallelogram

model
for solving simple analogy problems of the form a is to b as a* is to what?. In such
problems, a system given a problem like apple:tree::grape:?, i.e., apple is to tree as
grape is to , and must fill in the word vine. In the parallelogram model, illus-
trated in Fig. 6.15, the vector from the word apple to the word tree (=

»
apple� # »tree)

is added to the vector for grape (# »grape); the nearest word to that point is returned.

tree

apple

grape
vine

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson,
1973): the location of

»
vine can be found by subtracting # »tree from

»
apple and adding # »grape.

In early work with sparse embeddings, scholars showed that sparse vector mod-
els of meaning could solve such analogy problems (Turney and Littman, 2005), but
the parallelogram method received more modern attention because of its success
with word2vec or GloVe vectors (Mikolov et al. 2013b, Levy and Goldberg 2014b,
Pennington et al. 2014). For example, the result of the expression (

»
king)� # »man+

»woman is a vector close to # »queen. Similarly,
»
Paris� # »

France+
»
Italy) results in a

vector that is close to
»
Rome. The embedding model thus seems to be extracting rep-

resentations of relations like MALE-FEMALE, or CAPITAL-CITY-OF, or even COM-
PARATIVE/SUPERLATIVE, as shown in Fig. 6.16 from GloVe.

For a a:b::a*:b* problem, meaning the algorithm is given a, b, and a* and must
find b*, the parallelogram method is thus:

b̂⇤ = argmax
x

distance(x,a⇤ �a+b) (6.41)

with the distance function defined either as cosine or as Euclidean distance.
There are some caveats. For example, the closest value returned by the paral-

lelogram algorithm in word2vec or GloVe embedding spaces is usually not in fact
b* but one of the 3 input words or their morphological variants (i.e., cherry:red ::

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• The classic parallelogram model of analogical reasoning (Rumelhart and

Abrahamson 1973)

• To solve: "apple is to tree as grape is to _____"

• Add tree – apple to grape to get vine

Analogical relations

70

70
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• The parallelogram method can solve analogies with both sparse and dense

embeddings (Turney and Littman 2005, Mikolov et al. 2013b)

• king – man + woman is close to queen

• Paris – France + Italy is close to Rome

• For a problem a:a*::b:b*, the parallelogram method is:

Analogical relations via parallelogram

71

24 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of ±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of ±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy/Relational Similarity: Another semantic property of embeddings is their
ability to capture relational meanings. In an important early vector space model of
cognition, Rumelhart and Abrahamson (1973) proposed the parallelogram modelparallelogram

model
for solving simple analogy problems of the form a is to b as a* is to what?. In such
problems, a system given a problem like apple:tree::grape:?, i.e., apple is to tree as
grape is to , and must fill in the word vine. In the parallelogram model, illus-
trated in Fig. 6.15, the vector from the word apple to the word tree (=

»
apple� # »tree)

is added to the vector for grape (# »grape); the nearest word to that point is returned.

tree

apple

grape
vine

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson,
1973): the location of

»
vine can be found by subtracting # »tree from

»
apple and adding # »grape.

In early work with sparse embeddings, scholars showed that sparse vector mod-
els of meaning could solve such analogy problems (Turney and Littman, 2005), but
the parallelogram method received more modern attention because of its success
with word2vec or GloVe vectors (Mikolov et al. 2013b, Levy and Goldberg 2014b,
Pennington et al. 2014). For example, the result of the expression (

»
king)� # »man+

»woman is a vector close to # »queen. Similarly,
»
Paris� # »

France+
»
Italy) results in a

vector that is close to
»
Rome. The embedding model thus seems to be extracting rep-

resentations of relations like MALE-FEMALE, or CAPITAL-CITY-OF, or even COM-
PARATIVE/SUPERLATIVE, as shown in Fig. 6.16 from GloVe.

For a a:b::a*:b* problem, meaning the algorithm is given a, b, and a* and must
find b*, the parallelogram method is thus:

b̂⇤ = argmax
x

distance(x,a⇤ �a+b) (6.41)

with the distance function defined either as cosine or as Euclidean distance.
There are some caveats. For example, the closest value returned by the paral-

lelogram algorithm in word2vec or GloVe embedding spaces is usually not in fact
b* but one of the 3 input words or their morphological variants (i.e., cherry:red ::

71

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

72

72

4/11/24

13

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• It only seems to work for frequent words, small distances and certain

relations (relating countries to capitals, or parts of speech), but not others.

(Linzen 2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

• Understanding analogy is an open area of research (Peterson et al. 2020)

Caveats with the parallelogram method

73

73
D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Train embeddings on different decades of historical text to see meanings shift

Embeddings as a window onto historical semantics

74

~30 million books, 1850-1990, Google Books data

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

74

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Ask “Paris : France :: Tokyo : x”

ox = Japan

• Ask “father : doctor :: mother : x”

ox = nurse

• Ask “man : computer programmer :: woman : x”

ox = homemaker

Embeddings reflect cultural bias!

75

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh
Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word
embeddings." In NeurIPS, pp. 4349-4357. 2016.

75

D e a k in U n iv e r s it y C R IC O S P r o v id e r C o d e : 0 0 1 1 3 B

• Compute a gender or ethnic bias for each adjective: e.g., how much closer the

adjective is to "woman" synonyms than "man" synonyms, or names of particular

ethnicities

• Embeddings for competence adjective (smart, wise, brilliant, resourceful,

thoughtful, logical) are biased toward men, a bias slowly decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric, monstrous, bizarre) were

biased toward Asians in the 1930s, bias decreasing over the 20th century.

• These match the results of old surveys done in the 1930s

Historical embedding as a tool to study cultural biases

76

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.

76

